激光等离子

    激光

    一、简介

    激光是20世纪以来继核能电脑半导体之后,人类的又一重大发明,被称为“最快的刀”、“最准的尺”、“最亮的光”。原子受激辐射的光,故名“激光”。

    是原子中的电子吸收能量后,从低能级跃迁到高能级,再从高能级回落到低能级,回落的时候释放的能量以光子的形式放出。而激光,就是被引诱(激发)出来的光子队列,这光子队列中的光子们,光学特性一样,步调极其一致。打个比方就是,普通光源,比如电灯泡发出来的光子各不同,而且会各个方向乱跑,很不团结,但是激光中的光子们则是心往一处想,劲往一处使,这导致它们所向披靡,威力很大。[1] 

    激光应用很广泛,主要有激光打标激光焊接激光切割光纤通信激光光谱激光测距激光雷达激光武器激光唱片激光指示器激光矫视激光美容、激光扫描、激光灭蚊器等等。[2] 

    二、原理

    光与物质的相互作用,实质上是组成物质的微观粒子吸收或辐射光子,同时改变自身运动状况的表现。

    光粒子都具有特定的一套能级(通常这些能级是分立的)。任一时刻粒子只能处在与某一能级相对应的状态(或者简单地表述为处在某一个能级上)。与光子相互作用时,粒子从一个能级跃迁到另一个能级,并相应地吸收或辐射光子。光子的能量值为此两能级的能量差△E,频率为ν=△E/h(h为普朗克常量)。

    1.受激吸收(简称吸收)

    处于较低能级的粒子在受到外界的激发(即与其他的粒子发生了有能量交换的相互作用,如与光子发生非弹性碰撞),


    吸收了能量时,跃迁到与此能量相对应的较高能级。这种跃迁称为受激吸收。

    2.自发辐射

    粒子受到激发而进入的激发态,不是粒子的稳定状态,如存在着可以接纳粒子的较低能级,即使没有外界作用,粒子也有一定的概率,自发地从高能级激发态(E2)向低能级基态(E1)跃迁,同时辐射出能量为(E2-E1)的光子,光子频率 ν=(E2-E1)/h。这种辐射过程称为自发辐射。众多原子以自发辐射发出的光,不具有相位、偏振态、传播方向上的一致,是物理上所说的非相干光。

    3.受激辐射激光

    1917年爱因斯坦从理论上指出:除自发辐射外,处于高能级E2上的粒子还可以另一方式跃迁到较低能级。他指出当频率为 ν=(E2-E1)/h的光子入射时,也会引发粒子以一定的概率,迅速地从能级E2跃迁到能级E1,同时辐射一个与外来光子频率、相位、偏振态以及传播方向都相同的光子,这个过程称为受激辐射

    可以设想,如果大量原子处在高能级E2上,当有一个频率 ν=(E2-E1)/h的光子入射,从而激励E2上的原子产生受激辐射,得到两个特征完全相同的光子,这两个光子再激励E2能级上原子,又使其产生受激辐射,可得到四个特征相同的光子,这意味着原来的光信号被放大了。这种在受激辐射过程中产生并被放大的光就是激光。

    爱因斯坦1917提出受激辐射,激光器却在1960年问世,相隔43年,为什么?主要原因是,普通光源中粒子产生受激辐射的概率极小。当频率一定的光射入工作物质时,受激辐射和受激吸收两过程同时存在,受激辐射使光子数增加,受激吸收却使光子数减小。物质处于热平衡态时,粒子在各能级上的分布,遵循平衡态下粒子的统


    激光

    激光

    计分布律。按统计分布规律,处在较低能级E1的粒子数必大于处在较高能级E2的粒子数。这样光穿过工作物质时,光的能量只会减弱不会加强。要想使受激辐射占优势,必须使处在高能级E2的粒子数大于处在低能级E1的粒子数。这种分布正好与平衡态时的粒子分布相反,称为粒子数反转分布,简称粒子数反转。如何从技术上实现粒子数反转是产生激光的必要条件。

    理论研究表明,任何工作物质,在适当的激励条件下,可在粒子体系的特定高低能级间实现粒子数反转。若原子分子微观粒子具有高能级E2和低能级E1,E2和E1能级上的布居数密度N2和N1,在两能级间存在着自发发射跃迁、受激发射跃迁和受激吸收跃迁等三种过程。受激发射跃迁所产生的受激发射光,与入射光具有相同的频率相位、传播方向和偏振方向。因此,大量粒子在同一相干辐射场激发下产生的受激发射光是相干的。受激发射跃迁几率和受激吸收跃迁几率均正比于入射辐射场的单色能量密度。当两个能级的统计权重相等时,两种过程的几率相等。在热平衡情况下N2N1,


    激光

    激光

    这种状态称为粒子数反转状态。在这种情况下,受激发射跃迁占优势。光通过一段长为l的处于粒子数反转状态的激光工作物质(激活物质)后,光强增大eGl倍。G为正比于(N2-N1)的系数,称为增益系数,其大小还与激光工作物质的性质和光波频率有关。一段激活物质就是一个激光放大器。如果,把一段激活物质放在两个互相平行的反射镜(其中至少有一个是部分透射的)构成的光学谐振腔中(图1),处于高能级的粒子会产生各种方向的自发发射。其中,非轴向传播的光波很快逸出谐振腔外:轴向传播的光波却能在腔内往返传播,当它在激光物质中传播时,光强不断增长。如果谐振腔内单程小信号增益G0l大于单程损耗δ(G0l是小信号增益系数),则可产生自激振荡。原子的运动状态可以分为不同的能级,当原子从高能级向低能级跃迁时,会释放出相应能量的光子(所谓自发辐射)。

    三、基本特性

    定向发光

    普通光源是向四面八方发光。要让发射的光朝一个方向传播,需要给光源装上一定的聚光装置,如汽车的车前灯和探照灯都是安装有聚光作用的反光镜,使辐射光汇集起来向一个方向射出。激光器发射的激光,天生就是朝一个方向射出,光束的发散度极小,大约只有0.001弧度,接近平行。1962年,人类第一次使用激光照射月球,地球离月球的距离约38万公里,但激光在月球表面的光斑不到两公里。若以聚光效果很好,看似平行的探照灯光柱射向月球,按照其光斑直径将覆盖整个月球。天文学家相信,外星人或许正使用闪烁的激光作为一种宇宙灯塔来尝试与地球进行联系。

    亮度极高

    在激光发明前,人工光源中高压脉冲的亮度最高,与太阳的亮度不相上下,而红宝石激光器的激光亮度,能超过氙灯的几百亿倍。因为激光的亮度极高,所以能够照亮远距离的物体。红宝石激光器发射的光束在月球上产生的照度约为0.02勒克斯(光照度的单位),颜色鲜红,激光光斑肉眼可见。若用功率最强的探照灯照射月球,产生的照度只有约一万亿分之一勒克斯,人眼根本无法察觉。激光亮度极高的主要原因是定向发光。大量光子集中在一个极小的空间范围内射出,能量密度自然极高。

    激光的亮度与阳光之间的比值是百万级的,而且它是人类创造的。

    激光的颜色

    激光的颜色取决于激光的波长,而波长取决于发出激光的活性物质,即被刺激后能产生激光的那种材料。刺激红宝石就能产生深玫瑰色的激光束,它应用于医学领域,比如用于皮肤病的治疗和外科手术。公认最贵重的气体之一的氩气能够产生蓝绿色的激光束,它有诸多用途,如激光印刷术,在显微眼科手术中也是不可缺少的。半导体产生的激光能发出红外光,因此我们的眼睛看不见,但它的能量恰好能"解读"激光唱片,并能用于光纤通讯。但有的激光器可调节输出激光的波长。

    激光分离技术

    激光分离技术主要指激光切割技术激光打孔技术。激光分离技术是将能量聚焦到微小的空间,可获得105~1015W/cm2极高的辐照功率密度,利用这一高密度的能量进行非接触、高速度、高精度的加工方法。在如此高的光功率密度照射下,几乎可以对任何材料实现激光切割和打孔。激光切割技术是一种摆脱传统的机械切割、热处理切割之类的全新切割法,具有更高的切割精度、更低的粗糙度、更灵活的切割方法和更高的生产效率等特点。激光打孔方法作为在固体材料上加工孔方法之一,已成为一项拥有特定应用的加工技术,主要运用在航空、航天与微电子行业中。

    颜色极纯

    光的颜色由光的波长(或频率)决定。一定的波长对应一定的颜色。太阳辐射出的可见光段的波长分布范围约在0.76微米至0.4微米之间,对应的颜色从红色到紫色共7种颜色,所以太阳光谈不上单色性。发射单种颜色光的光源称为单色光源,它发射的光波波长单一。比如氪灯、氦灯、氖灯、氢灯等都是单色光源,只发射某一种颜色的光。单色光源的光波波长虽然单一,但仍有一定的分布范围。如氖灯只发射红光,单色性很好,被誉为单色性之冠,波长分布的范围仍有0.00001纳米,因此氖灯发出的红光,若仔细辨认仍包含有几十种红色。由此可见,光辐射的波长分布区间越窄,单色性越好。[3] 

    激光器输出的光,波长分布范围非常窄,因此颜色极纯。以输出红光的氦氖激光器为例,其光的波长分布范围可以窄到μm级别,是氪灯发射的红光波长分布范围的万分之二。由此可见,激光器的单色性远远超过任何一种单色光源。

    能量极大

    光子的能量是用E=hv来计算的,其中h为普朗克常量,v为频率。由此可知,频率越高,能量越高。激光频率范围3.846×10^(14)Hz到7.895×10^(14)Hz。

    电磁波谱可大致分为:

    (1)无线电波——波长从几千米到0.3米左右,一般的电视和无线电广播的波段就是用这种波;

    (2)微波——波长从0.3米到10^-3米,这些波多用在雷达或其它通讯系统;

    (3)红外线——波长从10^-3米到7.8×10^-7米;

    (4)可见光——这是人们所能感光的极狭窄的一个波段。波长从780—380nm。光是原子或分子内的电子运动状态改变时所发出的电磁波。由于它是我们能够直接感受而察觉的电磁波极少的那一部分;

    (5)紫外线——波长从3 ×10^-7米到6×10^-10米。这些波产生的原因和光波类似,常常在放电时发出。由于它的能量和一般化学反应所牵涉的能量大小相当,因此紫外光的化学效应最强;

    (6)伦琴射线(X射线)—— 这部分电磁波谱,


    激光

    激光

    波长从2×10^-9米到6×10^-12米。伦琴射线(X射线)是电原子的内层电子由一个能态跳至另一个能态时或电子在原子核电场内减速时所发出的;

    (7)伽玛射线——是波长从10^-10~10^-14米的电磁波。这种不可见的电磁波是从原子核内发出来的,放射性物质或原子核反应中常有这种辐射伴随着发出。γ射线的穿透力很强,对生物的破坏力很大。由此看来,激光能量并不算很大,但是它的能量密度很大(因为它的作用范围很小,一般只有一个点),短时间里聚集起大量的能量,用做武器也就可以理解了。

    其他特性

    激光有很多特性:首先,激光是单色的,或者说是单频的。有一些激光器可以同时产生不同频率的激光,但是这些激光是互相隔离的,使用时也是分开的。其次,激光是相干光。相干光的特征是其所有的光波都是同步的,整束光就好像一个“波列”。再次,激光是高度集中的,也就是说它要走很长的一段距离才会出现分散或者收敛的现象。

    四、应用领域

    激光加工技术是利用激光束物质相互作用的特性对材料(包括金属与非金属)进行切割、焊接表面处理、打孔、微加工以

    及做为光源,识别物体等的一门技术,传统应用最大的领域为激光加工技术。激光技术是涉及到光、机、电、材料及检测等多门学科的一门综合技术,传统上看,它的研究范围一般可分为:

    1.激光加工系统。包括激光器、导光系统、加工机床、控制系统及检测系统。

    2.激光加工工艺。包括切割、焊接、表面处理、打孔、打标、划线、微雕等各种加工工艺。

    激光焊接:汽车车身厚薄板、汽车零件、锂电池、心脏起搏器、密封继电器等密封器件以及各种不允许焊接污染和变形的器件。2013年使用的激光器有YAG激光器,CO2激光器和半导体泵浦激光器。

    激光切割:汽车行业、计算机、电气机壳、木刀模业、各种金属零件和特殊材料的切割、圆形锯片、压克力、弹簧垫片、2mm以下的电子机件用铜板、一些金属网板、钢管、镀锡铁板、镀亚铅钢板、磷青铜、电木板、薄铝合金、石英玻璃、硅橡胶、1mm以下氧化铝陶瓷片、航天工业使用的钛合金等等。使用激光器有YAG激光器和CO2激光器。

    激光笔 激光笔

    光笔:又称为激光指示器指星笔等,是把可见激光设计成便携、手易握、激光模组(二极管)加工成的笔型发射器。常见的激光笔有红光(650-660nm, 635nm)、绿光(515-520nm, 532nm)、蓝光(445-450nm)和蓝紫光(405nm)等,功率通常以毫瓦为单位。通常在会报、教学、导赏人员都会使用它来投映一个光点或一条光线指向物体,但激光会伤害到眼睛,任何情况下都不应该让激光直射眼睛。 [6] 

    激光治疗:可以用于手术开刀,减轻痛苦,减少感染。

    激光打标:在各种材料和几乎所有行业均得到广泛应用,2013年使用的激光器有YAG激光器、CO2激光器和半导体泵浦激光器。

    激光打孔:激光打孔主要应用在航空航天、汽车制造、电子仪表、化工等行业。激光打孔的迅速发展,主要体现在打孔用YAG激光器的平均输出功率已由2008年的400w提高到了800w至1000w。国内2013年比较成熟的激光打孔的应用是在人造金刚石和天然金刚石拉丝模的生产及钟表和仪表的宝石轴承、飞机叶片、多层印刷线路板等行业的生产中。2013年使用的激光器多以YAG激光器、CO2激光器为主,也有一些准分激光器、同位素激光器和半导体泵浦激光器。

    激光热处理:在汽车工业中应用广泛,如缸套、曲轴、活塞环、换向器、齿轮等零部件的热处理,同时在航空航天、机床行业和其它机械行业也应用广泛。我国的激光热处理应用远比国外广泛得多。2013年使用的激光器多以YAG激光器,CO2激光器为主。

    激光快速成型:将激光加工技术和计算机数控技术及柔性制造技术相结合而形成。多用于模具和模型行业。2013年使用的激光器多以YAG激光器、CO2激光器为主。

    激光涂敷:在航空航天、模具及机电行业应用广泛。2013年使用的激光器多以大功率YAG激光器、CO2激光器为主。

    激光成像:利用激光束扫描物体,将反射光束反射回来,得到的排布顺序不同而成像。用图像落差来反映所成的像。激光成像具有超视距的探测能力,可用于卫星激光扫描成像,未来用于遥感测绘等科技领域。

    激光医学

    激光在医学上的应用主要分三类:激光生命科学研究、激光诊断、激光治疗,其中激光治疗又分为:激光手术治疗、弱激光生物刺激作用的非手术治疗和激光的光动力治疗。

    应用于牙科的激光系统依据激光在牙科应用的不同作用,分为几种不同的激光系统。区别激光的重要特征之一是:光的波长,不同波长的激光对组织的作用不同,在可见光及近红外光谱范围的光线,吸光性低,穿透性强,可以穿透到牙体组织较深的部位,例如离子激光、二极管激光或Nd:YAG激光(如图1)。而Er:YAG激光和CO,激光的光线穿透性差,仅能穿透牙体组织约0.01毫米。区别激光的重要特征之二是:激光的强度(即功率),如在诊断学中应用的二极管激光,其强度仅为几个毫瓦特,它有时也可用在激光显示器上。

    用于治疗的激光,通常是几个瓦特中等强度的激光。激光对组织的作用,还取决于激光脉冲的发射方式,以典型的连续脉冲发射方式的激光有:氩离子激光、二极管激光、CO2,激光;以短脉冲方式发射的激光有:Er:YAG激光或许多Nd:YAG激光,短脉冲式的激光的强度(即功率)可以达到1,000瓦特或更高,这些强度高、吸光性也高的激光,只适用于清除硬组织。  

    激光美容

    (1)激光在美容界的用途越来越广泛。色素沉着,如太田痣鲜红斑痣雀斑老年斑毛细血管扩张等,以及去纹身、洗眼线、洗眉、治疗瘢痕等;而2013年以前一些新型的激光仪,高能超脉冲CO2激光,铒激光进行除皱磨皮换肤、治疗打鼾,美白牙齿等等,取得了良好的疗效,为激光外科开辟越来越广阔的领域。

    (2)激光手术有传统手术无法比拟的优越性。首先激光手术不需要住院治疗,手术切口小,术中不出血,创伤轻,无瘢痕。例如:眼袋的治疗传统手术法存在着由于剥离范围广、术中出血多,术后愈合慢,易形成瘢痕等缺点,而应用高能超脉冲CO2激光仪治疗眼袋,则以它术中不出血,不需缝合,不影响正常工作,手术部位水肿轻,恢复快,无瘢痕等优点,令传统手术无法比拟。而一些由于出血多而无法进行的内窥镜手术,则可由激光切割代替完成。(注:有一定的适应范围)

    (3)激光在血管性皮肤病以及色素沉着的治疗中成效卓越。使用脉冲染料激光治疗鲜红斑痣,疗效显着,对周围组织损伤小,几乎不落疤。它的出现,成为鲜红斑痣治疗史上的一次革命,因为鲜红斑痣治疗史上,放射、冷冻、电灼、手术等方法,其瘢痕发生率均高,并常出现色素脱失或沉着。激光治疗血管性皮肤病是利用含氧血红蛋白对一定波长的激光选择性的吸收,而导致血管组织的高度破坏,其具有高度精确性与安全性,不会影响周围邻近组织。因此,激光治疗毛细血管扩张也是疗效显着。

    此外,由于可变脉冲激光等相继问世,使得不满意纹身的去除,以及各类色素性皮肤病如太田痣,老年斑等的治疗得到了重大突破。这类激光根据选择性光热效应理论,(即不同波长的激光可选择性地作用于不同颜色的皮肤损害),利用其强大的瞬间功率,高度集中的辐射能量及色素选择性,极短的脉宽,使激光能量集中作用于色素颗粒、将其直接汽化、击碎,通过淋巴组织排出体外,而不影响周围正常组织,并且以其疗效确切,安全可靠,无瘢痕,痛苦小而深入人心。

    (4)激光外科开创了医学美容的新纪元。高能超脉冲CO2激光磨皮换肤术开拓了美容外科的新技术。它利用高能量,极短脉冲的激光,使老化、损伤的皮肤组织瞬间被汽化,不伤及周围组织,治疗过程中几乎不出血,并可精确的控制作用深度。其效果得到国际医学整形美容界充分肯定,被誉为“开创了医学美容新纪元”;此外,更有高能超脉冲CO2激光仪治疗眼袋、打鼾、甚至激光美白牙齿等,以其安全精确的疗效,简便快捷的治疗在医学美容界创造了一个又一个奇迹。激光美容使得医学美容向前迈进了一大步,并且赋予医学美容更新的内涵。

    激光去除面部黑痣

    激光去黑痣的原理就在于将激光在瞬间爆发出的巨大能量置于色素组织中,把色素打碎并分解,使其可以被巨噬细胞吞并掉,而后会随着淋巴循环系统排出体外,由此达到将色素去去掉的目的。

    激光去痣可以适用的痣的类型很多,比如包括上面提到的三种色素痣、太田痣、鲜红斑痣等,疗效都很明显,并且不容易留疤,风险性小。用二氧化碳激光亦能去黑痣

    激光治疗近视

    提示下情况的患者不适合接受激光治疗:第一. 眼部活动性炎症及病变;第二. 眼周化脓性病灶;第三. 已确诊的圆锥角膜;

    第四. 严重干眼症,伴有系统性干燥综合征;第五. 中央角膜厚度低于450μm;第六. 严重的眼附属器病变:眼睑缺损、变形、慢性泪囊炎等;第七. 全身结缔组织病及严重自身免疫性疾病,如系统性红斑狼疮、类风湿性关节炎、多发性硬化。

    相对禁忌证

    1.超高度近视伴后巩膜葡萄肿者;2. 初次手术前角膜中央平均曲率低于39D或高于47D应慎重;3. 暗光下瞳孔直径大于7mm;4. 对侧眼为法定盲眼;5. 2年内曾患单纯疱疹性角膜炎;6. 轻度白内障;7. 有视网膜脱离及黄斑出血病史;8. 轻度干眼症;9. 轻度睑裂闭合不全;10. 可疑青光眼患者;11. 月经期及妊娠期;12. 瘢痕体质;13. 糖尿病;14. 感冒发烧等身体不适;15. 癫痫;16. 焦虑症、抑郁症以及对手术期望过高者。

    激光除皱

    激光除皱是通过电脑控制的、低能量的二氧化碳激光,能准确地控制汽化皮肤表层的深度,完成分层汽化、无碳化的面部除皱护肤技术。激光用于消除皱纹的技术,是激光技术应用于临床以后,并几经改进、完善与不断更新后的结果。

    原理:皱纹产生的主要原因是皮肤胶原减少,真皮层变薄。运用最新激光-射频联合技术照射皮肤,可使真皮层增厚、减少皱纹,其原理是:刺激受损的胶原层,产生新的胶原质,从而填平因胶原减少而出现褶皱的皮肤;加热真皮组织层,利用人体自身修复机能刺激组织再生重建,使真皮层增厚。

    合理设计的激光可以通过皮肤中的黑色素、血红蛋白,尤其是水吸收激光释放的能量,并产生光热效应使之转化为热量,从而激活真皮中成纤维细胞等各种基质细胞产生新生的胶原蛋白、弹性蛋白以及各种细胞间基质,并发生组织重构,就象是给慵懒的皮肤做运动一样,使其通过锻炼而重新焕发年轻活力。数次治疗之后的皮肤含水量及弹性增加,质地改善,细小皱纹减少。

    适应症:1、原发性症状:[3]口周皱纹、眶周皱纹、萎缩性(凹陷性)疤痕、良性皮肤赘生物(肿瘤);2、皮肤粗糙、毛孔粗大、细小皱纹等皮肤老化表现以及炎性痤疮或痤疮后瘢痕等。

    高能超脉冲激光能够把周围组织的热损伤降到最低程度。微小皱纹和凹陷疤痕也可进行精确磨削。超脉冲激光能避免以往机械磨皮法、化学剥脱术出血多,飞溅的血液、组织细屑可使病毒在病人与病人间、病人与医务人员间传播等不足,通过气化病变组织来彻底消除皮肤损害,并使正常皮肤的热损伤极小,这一过程的作用时间快于使周围的正常组织也被加热的所需时间,具有磨皮去皱的功能。

    激光军事

    激光武器是一种利用定向发射的激光束直接毁伤目标或使之失效的定向能武器。根据作战用途的不同,激光武器可分为战术激光武器和战略激光武器两大类。武器系统主要由激光器和跟踪、瞄准、发射装置等部分组成,2013年通常采用的激光器有化学激光器、固体激光器、CO2激光器等。激光武器具有攻击速度快、转向灵活、可实现精确打击、不受电磁干扰等优点,但也存在易受天气和环境影响等弱点。

    激光武器已有30多年的发展历史,其关键技术也已取得突破,美国、俄罗斯、法国、以色列等国都成功进行了各种激光打靶试验。2013年低能激光武器已经投入使用,主要用于干扰和致盲较近距离的光电传感器,以及攻击人眼和一些增强型观测设备;高能激光武器主要采用化学激光器,按照现有的水平,今后5—10年内可望在地面和空中平台上部署使用,用于战术防空、战区反导和反卫星作战等。

    激光武器特点高度集束的激光,能量也非常集中。举例说;在日常生活中我们认为太阳是非常亮的,但一台巨脉冲红宝石激光器发出的激光却比太阳还亮200亿倍。当然,激光比太阳还亮,并不是因为它的总能量比太阳还大,而是由于它的能量非常集中。例如,红宝石激光器发出的激光射束,能穿透一张1/3厘米厚的钢板,但总能量却不足以煮熟一个鸡蛋。

    激光作为武器,有很多独特的优点。首先,它可以用光速飞行,每秒30万公里,任何武器都没有这样高的速度。它一旦瞄准,几乎不要什么时间就立刻击中目标,用不着考虑提前量。另外,它可以在极小的面积上、在极短的时间里集中超过核武器100万倍的能量,还能很灵活地改变方向,没有任何发射性污染。激光武器分为三类:一是致盲型。(激光剑)前面我们讲过的机载致盲武器,就属于这一类。二是近距离战术型,可用来击落导弹和飞机。1978年美国进行的用激光打陶式反坦克导弹的试验,就是用的这类武器。还有科幻电影中,通过对激光武器的形变,产生的激光盾翼三是远距离战略型。这类的研制困难最大,但一旦成功,作用也最大,它可以反卫星、反洲际弹道导弹,成为最先进的防御武器。

    激光怎样击毁目标呢?科学家们认为有两个方面:一是穿孔,二是层裂。所谓穿孔,就是高功率密度的激光束使靶材表面急剧熔化,进而汽化蒸发,汽化物质向外喷射,反冲力形成冲击波,在靶材上穿一个孔。所谓层裂,就是靶材表面吸收激光能量后,原子被电离,形成等离体“云”。“云”向外膨胀喷射形成应力波向深处传播。应力波的反射造成靶材被拉断,形成“层裂”破坏。除此以外,等离子体“云”还能辐射紫外线或X光,破坏目标结构和电子元件。 激光武器作用的面积很小,但破坏在目标的关键部位上,可造成目标的毁灭性破坏。这和惊天动地的核武器相比,完全是两种风格。

    激光武器的分类:不同功率密度,不同输出波形,不同波长的激光,在与不同目标材料相互作用时,会产生不同的杀伤破坏效应。用激光作为“死光”武器,不能像在激光加工中那样借助于透镜聚焦,而必须大大提高激光器的输出功率,作战时可根据不同的需要选择适当的激光器。2013年时,激光器的种类繁多,名称各异,有体积整整占据一幢大楼、功率为上万亿瓦、用于引发核聚变的激光器,也有比人的指甲还小、输出功率仅有几毫瓦、用于光电通信的半导体激光器。按工作介质区分,目前有固体激光器、液体激光器和分子型、离子型、准分子型的气体激光器等。同时,按其发射位置可分为天基、陆基、舰载、车载和机载等类型,按其用途还可分为战术型和战略型两类。

    1.战术激光武器

    战术激光武器是利用激光作为能量,是像常规武器那样直接杀伤敌方人员、击毁坦克、飞机等,打击距离一般可达20公里。这种武器的主要代表有激光枪和激光炮,它们能够发出很强的激光束来打击敌人。1978年3月,世界上的第一支激光枪在美国诞生。激光枪的样式与普通步枪没有太大区别,主要由四大部分组成:激光器、激励器、击发器和枪托。2013年,国外已有一种红宝石袖珍式激光枪,外形和大小与美国的派克钢笔相当。但它能在距人几米之外烧毁衣服、烧穿皮肉,且无声响,在不知不觉中致人死命,并可在一定的距离内,使火药爆炸,使夜视仪、红外或激光测距仪等光电设备失效。还有7种稍大重量与机枪相仿的小巧激光枪,能击穿铜盔,在1500米的距离上烧伤皮肉、致瞎眼睛等。 战术激光武器的"挖眼术"不但能造成飞机失控、机毁人亡,或使炮手丧失战斗能力,而且由于参战士兵不知对方激光武器会在何时何地出现,常常受到沉重的心理压力。因此,激光武器又具有常规武器所不具备的威慑作用。1982年英阿马岛战争中,英国在航空母舰和各类护卫舰上就安装有激光致盲武器,曾使阿根廷的多架飞机失控、坠毁或误入英军的射击火网。

    2.战略激光武器

    战略激光武器可攻击数千公里之外的洲际导弹;可攻击太空中的侦察卫星和通信卫星等。例如,1975年11月,美国的两颗监视导弹发射井的侦察卫星在飞抵西伯利亚上空时,被前苏联的“反卫星”陆基激光武器击中,并变成“瞎子”。因此,高基高能激光武器是夺取宇宙空间优势的理想武器之一,也是军事大国不惜耗费巨资进行激烈争夺的根本原因。据外刊透露,自70年代以来,美俄两国都分别以多种名义进行了数十次反卫星激光武器的试验。 2013年,反战略导弹激光武器的研制种类有化学激光器、准分子激光器、自由电子激光器和调射线激光器。例如:自由电子激光器具有输出功率大、光束质量好、转换效率高、可调范围宽等优点。但是,自由电子激光器体积庞大,只适宜安装在地面上,供陆基激光武器使用。作战时,强激光束首先射到处于空间高轨道上的中断反射镜。中断反射镜将激光束反射到处于低轨道的作战反射镜,作战反射镜再使激光束瞄准目标,实施攻击。通过这样的两次反射,设置在地面的自由电子激光武器,就可攻击从世界上任何地方发射的战略导弹。 高基高能激光武器是高能激光武器与航天器相结合的产物。当这种激光器沿着空间轨道游弋时,一旦发现对方目标,即可投入战斗。由于它部署在宇宙空间,居高临下,视野广阔,更是如虎添翼。在实际战斗中,可用它对对方的空中目标实施闪电般的攻击,以摧毁对方的侦察卫星、预警卫星、通信卫星、气象卫星,甚至能将对方的洲际导弹摧毁在助推的上升阶段。

    3.激光动力推进器

    既然太阳不足以推动恒星际太空飞船,于是有科学家提出了激光动力推进器技术,利用一束强大的激光让物体飞行。

    激光雷达(laser radar)是指用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物 。由发射机 、天线 、接收机 、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。

    激光通信

    激光通信,是激光在大气空间传输的一种通信方式。激光大气通信的发送设备主要由激光器(光源)、光调制器、光学发射天线(透镜)等组成;接收设备主要由光学接收天线、光检测器等组成。

    信息发送时,先转换成电信号,再由光调制器将其调制在激光器产生的激光束上,经光学天线发射出去。信息接收时,光学接收天线将接收到的光信号聚焦后,送至光检测器恢复成电信号,再还原为信息。大气激光通信的容量大、保密性好,不受电磁干扰。但激光在大气中传输时受雨、雾、雪、霜等影响,衰耗要增大,故一般用于边防、海岛、跨越江河等近距离通信,以及大气层外的卫星间通信和深空通信。

    早期的激光大气通信所用光源多数为二氧化碳激光器、氦-氖激光器等。二氧化碳激光器输出激光波长为10.6微米,此波长正好处在大气信道传输的低损耗窗口,是较为理想的通信光源。从70年代末到80年代中期,由于在技术实现上难以解决好全天候、高机动性、高灵活性、稳定性等问题,激光大气通信的研究陷入低潮。

    1988年,巴西宣布研制成功一种便携式半导体激光大气通信系统。这种通过激光器联通线路的军用红外通信装置,其外形如同一架双筒望远镜,在上面安装了激光二极管和麦克风。使用时,一方将双筒镜对准另一方即可实现通信,通信距离为1千米,如果将光学天线固定下来,通信距离可达15千米。1989年美国成功地研制出一种短距离、隐蔽式的大气激光通信系统。1990年,美国试验了适用于特种战争和低强度战争需要的紫外光波通信,这种通信系统完全符合战术任务的要求,通信距离为2~5千米;如果对光束进行适当处理,通信距离可达5~10千米。

    90年代初,俄罗斯研制成功了大功率半导体激光器,并开始了激光大气通信系统技术的实用化研究。不久便推出了10千米以内的半导体激光大气通信系统并在莫斯科、瓦洛涅什、图拉等城市应用。在瓦涅什河两岸相距4千米的两个电站之间,架设起了半导体激光大气通信系统,该系统可同时传输8路数字电话。在距离瓦洛涅什城约200千米以及在距莫斯科不远的地方,也开通了半导体激光大气通信系统线路。

    随着半导体激光器的不断成熟、光学天线制作技术的不断完善、信号压缩编码等技术的合理使用,激光大气通信正重新焕发出生机。

    激光测速

    激光测速是对被测物体进行两次有特定时间间隔的激光测距,取得在该一时段内被测物体的移动距离,从而得到该被测物体的移动速度。因此,激光测速具有以下几个特点:

    1、由于该激光光束基本为射线,估测速距离相对于雷达测速有效距离远,可测1000M外;

    2、测速精度高,误差<1公里;

    3、鉴于激光测速的原理,激光光束必须要瞄准垂直与激光光束的平面反射点,又由于被测车辆距离太远、且处于移动状态,或者车体平面不大,而导致激光测速成功率低、难度大,特别是执勤警员的工作强度很大、很易疲劳;

    4、鉴于激光测速的原理,激光测速器不可能具备在运 动中使用,只能在静止状态下应用;因此,激光测速仪不能称之为“流动电子警察”。在静止状态下使用时,司机很容易发现有检测,因此达不到预期目的;

    5、价格昂贵,2013年经过正规途径进口的激光测速仪(不含取景和控制部分)价格至少在一万美金左右。

    激光工业

    激光在工业上,也应用极为广泛,因为激光在激光束聚焦在材料表面的时候能够使材料熔化,使激光束与材料沿一定轨迹作相对运动,从而形成一定形状的切缝。七十年代后,为了改善和提高火焰切割的切口质量,又推广了氧乙烷精密火焰切割和等离子切割。在工业生产中有一定的适用范围。

    激光玻璃

    激光玻璃是一种以玻璃为基质的固体激光材料。它广泛应用于各类型固体激光光器中,并成为高功率和高能量激光器的主要激光材料。

    激光玻璃由基质玻璃和激活离子两部分组成。激光玻璃各种物理化学性质主要由基质玻璃决定,而它的光谱性质则主要由激活离子决定。但是基质玻璃与激活离子彼此间互相作用,所以激活离子对激光玻璃的物理化学性质有一定的影响,而基质玻璃对它的光谱性质的影响有时还是相当重要的。

    激光冷却

    激光冷却(laser cooling)利用激光和原子的相互作用减速原子运动以获得超低温原子的高新技术。这一重要技术早期的主要目的是为了精确测量各种原子参数,用于高分辨率激光光谱和超高精度的量子频标(原子钟),后来却成为实现原子玻色-爱因斯坦凝聚的关键实验方法。激光冷却有许多应用,如:原子光学、原子刻蚀、原子钟、光学晶格光镊子、玻色-爱因斯坦凝聚、原子激光、高分辨率光谱以及光和物质的相互作用的基础研究等等。


    光谱(laser spectra)以激光为光源的光谱技术。与普通光源相比,激光光源具有单色性好、亮度高、方向性强和相干性强等特点,是用来研究光与物质的相互作用,从而辨认物质及其所在体系的结构、组成、状态及其变化的理想光源。激光的出现使原有的光谱技术在灵敏度和分辨率方面得到很大的改善。由于已能获得强度极高、脉冲宽度极窄的激光,对多光子过程、非线性光化学过程以及分子被激发后的弛豫过程的观察成为可能,并分别发展成为新的光谱技术。激光光谱学已成为与物理学、化学、生物学及材料科学等密切相关的研究领域。

    激光传感器

    激光传感器laser transducer)利用激光技术进行测量的传感器。它由激光器、激光检测器和测量电路组成。激光传感器是新型测量仪表,它的优点是能实现无接触远距离测量,速度快,精度高,量程大,抗光、电干扰能力强等。激光是最准的尺。

    激光测云仪

    利用激光在大气层中的衰减来判断云层。具体的是当激光在大气层中传越时,由于发射的能量与接收的能量之间有能量差,利用能量的衰减度与云层的水分子的含量多少来判断云层结构和距离的仪器。

    核聚变

    我国着名物理学家王淦昌院士1964年就提出了激光核聚变的初步理论,从而使我国在这一领域的科研工作走在当时世界各国的前列。1974年,我国采用一路激光驱动聚氘乙烯靶发生核反应,并观察到氘氘反应产生的中子。此外,着名理论物理学家于敏院士在20世纪70年代中期就提出了激光通过入射口、打进重金属外壳包围的空腔、以 X光辐射驱动方式实现激光核聚变的概念。1986年,我国激光核聚变实验装置“神光”研制成功,聂荣臻元帅还专门写信祝贺。